
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Module 3, Lesson 1
Web Applications

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

At the end of this lesson, you should be able to
• Explain the role of “client” and “server” in the context of

web application programming

• Explain the primary options for client-server
communication

• Identify places where TypeScript does — and doesn’t! —
help with writing correctly-behaving web applications,
and identify some of the solutions to functionality
TypeScript doesn’t provide

2

3

So, software engineering must encompass:

IMPLEMENTING

ORGANIZING

PLANNING

PEOPLE PROCESSES PROGRAMS

We’re gonna be
stuck over here for

a bit.

Web Applications are Distributed Systems

Distributed systems are hard!

• Web applications are designed to only be kinda
difficult-to-build distributed systems

• Most of this lecture is bad advice if you’re Google,
Netflix, or Amazon

Web applications are distributed systems because

1. You don’t live in the cloud

2. Scalability: Netflix needs at least two computers

4

5

An Insultingly Shallow Intro to Networking

internet

CLIENT
(a web

browser
running in a
consumer
operating

system on a
consumer

device)

SERVER
(a program

running on a
computer in

a data
center

somewhere)

An Insultingly Shallow Intro to Networking

https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

CLIENT
(a web

browser
running in a
consumer
operating

system on a
consumer

device)

SERVER
(a program

running on a
computer in

a data
center

somewhere)

An Insultingly Shallow Intro to Networking

Transport Layer
• TCP you may have heard of

• UDP you don’t need for this class

• QUIC is new

Key abstraction: sending a message

7

CLIENT
(a web

browser
running in a
consumer
operating

system on a
consumer

device)

SERVER
(a program

running on a
computer in

a data
center

somewhere)

https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

Application Layer Abstractions

8

CLIENT
(a web

browser
running in a
consumer
operating

system on a
consumer

device)

SERVER
(a program

running on a
computer in

a data
center

somewhere)

Remote procedure calls happen via HTTP requests (REST)

GET /

ok here you go (status 200, payload <!doctype html><html lang=“en…)

GET /favicon.svg

ok here you go (status 200, payload <svg width="450" height="450" viewBox="…)

POST /api/user/login, payload {"username":"user1","password":”password"}

ok here you go (status 200, payload {"error":"Invalid username or password"})

Application Layer Abstractions

9

CLIENT
(a web

browser
running in a
consumer
operating

system on a
consumer

device)

SERVER
(a program

running on a
computer in

a data
center

somewhere)

Message Passing happen via WebSockets

I would like to join this chatroom ["chatJoin",{"auth":{"username":"rob",”pass…)

hey someone joined chat ["chatUserJoined",{"user":{"username":”tim”, “display”:”T…)

hey someone joined chat ["chatUserJoined",{"user":{"username":”bo”, “display”:”Ro…)

i got u ["chatJoined",{"_id":"68112e17c5df6e25e2c0a2c7","messages":[{"_id":"68136f9ac5df…)

Application Layer Abstractions

10

REST Web Sockets

Implementing REST APIs

11

SERVER
(a program

running on a
computer in

a data
center

somewhere)

“Express” is good for implementing servers in NodeJS

POST /api/user/login, payload {"username":"user1","password":”password"}

ok here you go (status 200, payload {"error":"Invalid username or password"})
CLIENT

import express from 'express’;

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

Implementing REST APIs

12

SERVER
(a program

running on a
computer in

a data
center

somewhere)

The “any” type and “as” are common in TypeScript

POST /api/user/login, payload {"username":"user1","password":”password"}

ok here you go (status 200, payload {"error":"Invalid username or password"})
CLIENT

import express from 'express’;

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

creators of the express types
chose to make this type “any”

Implementing REST APIs

The “any” type and “as” are common in TypeScript

13

SERVER
(a program

running on a
computer in

a data
center

somewhere)

import express from 'express’;

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

CLIENT
POST /api/user/login, payload {"username":"user1","password":”password"}

ok here you go (status 200, payload {"error":"Invalid username or password"})

TypeScript: looks good!
ESLint: “unsafe
assignment of any value”

creators of the express types
chose to make this type “any”

Implementing REST APIs

The “any” type and “as” are common in TypeScript

14

SERVER
(a program

running on a
computer in

a data
center

somewhere)

import express from 'express’;

type UserAuth = { username: string; password: string };

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body as UserAuth;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

CLIENT
POST /api/user/login, payload {"username":"user1","password":”password"}

ok here you go (status 200, payload {"error":"Invalid username or password"})

TypeScript: looks good!
ESLint: looks good!

Implementing REST APIs

15

SERVER
(a program

running on a
computer in

a data
center

somewhere)

Anyone can send an HTTP request containing anything

POST /api/user/login, payload {”lol":[”owned”],”password":4,”note”:”loser”}

???

import express from 'express’;

type UserAuth = { username: string; password: string };

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body as UserAuth;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

Implementing REST APIs

16

SERVER
(a program

running on a
computer in

a data
center

somewhere)

Anyone can send an HTTP request containing anything

POST /api/user/login, payload {”lol":[”owned”],”password":4,”note”:”loser”}

i have no idea what is going on (500 Internal Server Error)

import express from 'express’;

type UserAuth = { username: string; password: string };

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

const { username, password } = request.body as UserAuth;

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

Uncaught TypeError:
username.toLowerCase is not a
function

17

Implementing REST APIs
import express from 'express';

import { z } from 'zod';

type UserAuth = { username: string; password: string };

const zUserAuth = z.object({

 username: z.string(),

 password: z.string(),

});

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

 const { username, password }: UserAuth = zUserAuth.parse(request.body);

 if (username.toLowerCase() === 'user1' && password === 'sekret’) {

 response.send({ success: true, numLogins: numLogins++ });

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

Throws an error if the
input is unexpected
(safeParse is the non-
exception-raising option)

18

Implementing REST APIs
import express from 'express’;

import { z } from 'zod’;

type UserAuth = z.infer<typeof zUserAuth>;

const zUserAuth = z.object({

 username: z.string(),

 password: z.string(),

});

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

 const { username, password }: UserAuth = zUserAuth.parse(request.body);

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++});

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

Testing and TypeScript

19

• It makes sense often to treat your TypeScript types
as not-needing-to-be-tested

• It never makes sense to assume anything about
information coming to your server from a REST API
call as having the TypeScript type you expect.
• Your project is set up so that inputs to REST APIs are

treated as unknown, not any.

• Don’t use as assertions — validate!

• It makes sense sometimes, maybe to treat
information coming back to your web app from a
server as having the TypeScript type you expect.

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

Testing and TypeScript

What we want is straightforward:

20

Types the server
code understands

Types the client
code understands

Single source of
API types

Readable
documentation

Validators the
server can use to
sanitize inputs

Testing and TypeScript

What we want is straightforward:

• A single place to explain the API interface
that produces docs, types, and validators

• TSOA
• requires writing the API as classes, not as functions

• GraphQL
• shoves your entire API into one endpoint that accepts HTTP POST requests

• has some other advantages we won’t talk about here

• Hono
• Uses Zod, is interesting! But doesn’t work with express

21

It’s the end of the lesson, so you should be able to:
• Explain the role of “client” and “server” in the context of

web application programming

• Explain the primary options for client-server
communication

• Identify places where TypeScript does — and doesn’t! —
help with writing correctly-behaving web applications,
and identify some of the solutions to functionality
TypeScript doesn’t provide

22

Review

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 3, Lesson 1 Web Applications
	Slide 2: Learning Goals for this Lesson
	Slide 3: So, software engineering must encompass:
	Slide 4: Web Applications are Distributed Systems
	Slide 5: An Insultingly Shallow Intro to Networking
	Slide 6: An Insultingly Shallow Intro to Networking
	Slide 7: An Insultingly Shallow Intro to Networking
	Slide 8: Application Layer Abstractions
	Slide 9: Application Layer Abstractions
	Slide 10: Application Layer Abstractions
	Slide 11: Implementing REST APIs
	Slide 12: Implementing REST APIs
	Slide 13: Implementing REST APIs
	Slide 14: Implementing REST APIs
	Slide 15: Implementing REST APIs
	Slide 16: Implementing REST APIs
	Slide 17: Implementing REST APIs
	Slide 18: Implementing REST APIs
	Slide 19: Testing and TypeScript
	Slide 20: Testing and TypeScript
	Slide 21: Testing and TypeScript
	Slide 22: Review

